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Psychologists have long recognized two kinds of learning: one that is relatively shallow and
domain-specific; and another that is deeper, producing generalizable insights that transfer
across domains. The game theory literature has only recently considered this distinction,
and the conditions that stimulate the latter kind of “meaningful” learning in games are still
unclear. Three experiments demonstrate that one kind of meaningful learning — acquisition
of iterated dominance — occurs in the absence of any feedback. We demonstrate that such
feedback-free meaningful learning transfers to new strategically similar games, and that
such transfer does not typically occur when initial games are played with feedback. The
effects of withholding feedback are similar to, and substitutable with, those produced by
requiring players to explain their behavior, a method commonly employed in psychology to
increase deliberation. This similarity suggests that withholding feedback encourages deeper
thinking about the game in a manner similar to such self-explanation.

© 2009 Elsevier Inc. All rights reserved.

Considerable research in economics attempts to understand how people learn in strategic environments. Many exper-
imental studies on games demonstrate that players do not initially play equilibrium strategies, but that with repetition
their behavior converges towards equilibrium. Several models attempt to provide a theoretical basis for this regularity (e.g.,
Cheung and Friedman, 1998; Fudenberg and Levine, 1998; Erev and Roth, 1998; Camerer and Ho, 1999; see Chapter 6 of
Camerer, 2003, for a review). While these models vary in the details of how they assume learning occurs, most share the
assumption that learning operates by players observing how well different strategies perform — either by playing those
strategies, observing others playing them, or observing (foregone) outcomes produced by unselected strategies — and then
adjusting their subsequent behavior in the direction of better-performing strategies. Thus, most learning models in eco-
nomics focus on understanding how players gradually figure out what strategy produces the highest payoffs in a specific
game, a process best described as strategy learning.

Economists have devoted considerably less attention to understanding a distinct process that might be called meaningful
learning, whereby individuals come to obtain meaningful cognitive representations of higher-order concepts, rules, and rela-
tionships that can be transferred to novel domains. While a small amount of empirical and theoretical work in economics
has uncovered some conditions under which higher-order concepts learned in one context transfer to new contexts (Rankin
et al., 2000; Stahl, 2000a, 2000b; Haruvy and Stahl, 2008; Cooper and Kagel, 2003, 2005, 2008), the factors that stimulate
meaningful learning in games are still not well understood within economics.
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In this paper, we attempt to advance economists’ understanding of meaningful learning by importing relevant insights
from psychology. Although economists have only recently begun to study more than one type of learning, psychologists have
for decades recognized a distinction between two kinds of learning, based on the way in which people learn, the kind of
knowledge produced by learning, and the ability of individuals to transfer what they learn to new domains. This distinction
is important because it highlights significant differences in the depth of what is learned and the ability of individuals to
generalize their learning to new contexts.

One type of learning studied within psychology, variously referred to as “implicit,” “procedural,” or “unconscious” learn-
ing (Holyoak and Spellman, 1993), is an unconscious process that yields knowledge that is usually neither accessible to cog-
nition nor verbalizable (Reber 1967, 1989; Mandler, 2004). It is demonstrated, for instance, by showing that subjects exposed
to massive amounts of information demonstrate improved performance in pattern matching, but that such improvement ex-
ceeds their ability to articulate or generalize their knowledge (Berry and Broadbent, 1984; Nissen and Bullemer, 1987;
Hayes and Broadbent, 1988). A key property of this kind of learning is that it operates through perceptual and associative
processes, rather than through cognition, and therefore fails to produce cognitive or conceptual representations of what is
learned (Mandler, 2004). An important consequence of the absence of such meaningful representation is that what is learned
through implicit learning cannot be consciously manipulated or transferred to new domains (Holyoak and Spellman, 1993).

The other type of learning, commonly referred to as “explicit,” “declarative,” or “conscious” learning (Holyoak and Spell-
man, 1993), is a process through which individuals come to obtain meaningful cognitive representations of underlying
concepts, rules, and relationships. Unlike the knowledge acquired via implicit learning, the knowledge acquired via explicit
learning is consciously accessible, generalizable, and verbalizable. Moreover, explicit learning involves cognition, the evalua-
tion of hypotheses, and often results in the development of improved general problem-solving ability (Hayes and Broadbent,
1988; Mandler, 2004). Thus, a key property that distinguishes explicit from implicit learning is that the former is less
context-dependent and generates knowledge that can transfer to novel situations.

We propose that the strategy learning commonly observed in games more closely resembles the former than the latter,
more meaningful, kind of learning. This correspondence is perhaps best illustrated by the lack of transfer of learning to new
games. Despite many experiments on learning in games — in which subjects converge towards equilibrium when playing a
game repeatedly with prompt outcome feedback — there is little evidence that what is learned transfers to new strategically
similar games (i.e., games in which a meaningful principle, such as dominance or backward-induction, applies non-trivially
to both games). For instance, Ho et al. (1998) explicitly test for transfer in two closely-related dominance-solvable games
and find no transfer from the first game to the second. Similarly, in a series of papers, Cooper and Kagel (2003, 2005, 2008)
find that transfer does not occur when subjects play two signaling games sequentially under typical feedback conditions,
unless experimental treatments (such as meaningful context or team play) facilitate subjects thinking more deeply about
the game.

Given the correspondence between strategy and implicit learning, manipulations commonly employed in psychology ex-
periments to inhibit implicit learning and stimulate explicit learning could serve an analogous function in game theory
experiments and could facilitate meaningful learning. One such manipulation involves the amount of feedback participants
receive about task performance. Counterintuitively, psychologists have often found that deeper and more meaningful learn-
ing occurs more often when people receive minimal or delayed feedback than under full and immediate feedback (e.g.,
Salmoni et al., 1984; Winstein and Schmidt, 1990; Goodman, 1998; Lurie and Swaminathan, 2009).

Indeed, there is also some evidence in the economics literature that people can engage in a type of learning inconsistent
with strategy learning when playing games repeatedly without any feedback. Weber (2003) conducted an experiment in
which subjects played a dominance-solvable game 10 times without any outcome information between plays of the game.
Across several treatments, significant learning occurred — behavior converged towards equilibrium.1 Such learning cannot
be considered strategy learning, which requires regular feedback. Although it is impossible to conclude that the feedback-
free learning observed in Weber (2003) was meaningful without examining whether such improvements in performance
transfer to a new game, these findings combined with the relevant psychological research suggest that withholding feedback
in games may stimulate meaningful learning.

The main hypothesis for our research is that withholding feedback in a game played repeatedly will produce meaningful
learning that will transfer to the first period of a new but strategically similar game.2 We focus on iterated dominance as the
principle that is learned and transferred. We conduct three experiments, all of which demonstrate that the feedback-free
learning that occurs in earlier dominance-solvable games transfers to later dominance-solvable games. Moreover, our second
and third experiments demonstrate that the kind of (strategy) learning that typically occurs with regular outcome and payoff
feedback fails to yield similar transfer. We interpret this difference in transferability as evidence that the kind of learning
produced by feedback-free repetition is more meaningful than the learning produced with immediate feedback.

We also explore, in our third experiment, why withholding feedback might stimulate meaningful learning (or, equiva-
lently, why providing feedback impairs the development of meaningful learning). Goodman (1998) proposed that “external

1 A handful of other papers also provide support for the notion that people can learn in environments where they make repeated choices without
feedback (Grether, 1980; Cason and Mui, 1998; Rapoport et al., 2002). However, none of these studies directly explores this phenomenon or focuses on
learning.

2 We focus on “immediate transfer” (to the first period of the new game) because such one-shot behavior is the focus of much of the research on iterated
rationality (e.g., Costa-Gomes et al., 2001) and also because it is a good way to measure prior learning in games (Merlo and Schotter, 1999).
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Table 1
Games used in Experiment 1.

Game A
Left Right

Top 90, 90 0, 50
Bottom 50, 0 50, 50

Game B
Left Right

Top 75, 35 40, 40
Bottom 65, 100 35, 10

Game C
Left Middle Right

Top 30, 30 35, 40 100, 35
Middle 40, 35 45, 45 65, 40
Bottom 35, 100 40, 65 60, 60

Game D
Left Middle Right

Top 50, 50 40, 75 75, 55
Middle 20, 25 50, 65 65, 45
Bottom 90, 55 25, 30 60, 80

feedback,” or learning the correct answer to a problem one just attempted to solve, can impair meaningful learning by
diverting attention from “response-produced feedback,” or what is learned by simply performing a task (see also Anzai
and Simon, 1979). Similarly, in a meta-analysis of studies that examined the effectiveness of external feedback, Kluger and
DeNisi (1996) found that the ability of external feedback to induce meaningful learning decreases as it moves attention
away from important features of the task being performed.3

If feedback impairs meaningful learning by reducing the ability and motivation to think carefully about the task (or
game), then interventions that force people to think more deeply about their decisions should reduce the negative influence
of feedback on the development meaningful learning. Requiring people to generate “self-explanations,” or engage in verbal-
ization during problem-solving, is one commonly employed method for inducing deeper thought (Gagne and Smith, 1962;
Chi et al., 1994). Therefore, in our third experiment we vary in a first game both whether feedback is withheld and whether
players are required to engage in self-explanation as they play the game (in the form of written explanations for behavior). If
withholding feedback stimulates the type of deeper thinking that occurs when prompted to self-explain, both interventions
should have similar and substitutable effects on meaningful learning. This is what we find.

1. Experiment 1

Experiment 1 examined whether it is possible to produce meaningful learning, measured by transfer across games, when
playing games repeatedly without feedback. Subjects played four normal-form games repeatedly without any feedback until
the end of the experiment. They played each game 20 times before proceeding to the next game, and the order of games
varied across sessions. Table 1 presents the four games used in the experiment. The payoffs represent points, with 200
points equal to $1.

Game A is a symmetric stag-hunt game with three Nash equilibria: the Pareto-dominant equilibrium (Top/Left), the risk-
dominant equilibrium (Bottom/Right) (Harsanyi and Selten, 1988), and a mixed-strategy equilibrium in which subjects play
Top/Left with probability 0.56. Games B, C, and D, on which we will focus, have unique equilibria resulting from iterated
deletion of dominated strategies.4 In Game B, Bottom is dominated (step 1) and then Left is dominated once Bottom is
removed (step 2), producing the equilibrium prediction of Top/Right. For Game C, which is symmetric, iterated dominance
eliminates Bottom/Right (step 1) and Top/Left (step 2), resulting in the equilibrium of Middle/Middle. Finally, in Game D
iterated dominance eliminates Left (step 1), Bottom (step 2), Right (step 3), and Top (step 4), leaving the equilibrium in
which both players choose Middle.

1.1. Experimental design

There were four sessions. In each session 18 to 20 subjects played the above four games in 20-period blocks. The
sequence of games is presented in Table 2.

Each subject sat at a computer monitor. Subjects’ roles (Row or Column) were fixed and each subject was anonymously
paired with someone of the opposite role for the duration of the experiment. Matching and role assignment were done by

3 Beyond merely distracting, feedback can also reduce the motivation to think carefully about a task (Einhorn, 1980).
4 We included Game A to test one possible interpretation of feedback-free learning — that a player’s change in behavior results from best responding

to her own prior choices. Since we find little evidence of this phenomenon (players in fact regularly move away from a best-response to their own prior
strategies), we focus our attention primarily on the three dominance-solvable games.
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Table 2
Sequence of games by session (Experiment 1).

Game 1 Game 2 Game 3 Game 4 N

Session 1 D A C B 18
Session 2 C B A D 18
Session 3 A D B C 18
Session 4 B C D A 20

Table 3
Choice frequencies by 5-period blocks (Experiment 1).

Periods

1–5 6–10 11–15 16–20

Game A
Top/Left 0.765 0.668 0.665 0.659
Bottom/Right 0.235 0.332 0.335 0.341

Game B
Top (Equil.) 0.741 0.768 0.827 0.811
Bottom (D1 viol.) 0.259 0.232 0.173 0.189

Left (D2 viol.) 0.654 0.654 0.611 0.627
Right (Equil.) 0.346 0.346 0.389 0.373

Equilibrium 0.543 0.557 0.608 0.592

Game C
Top/Left (D2 viol.) 0.200 0.186 0.224 0.189
Middle (Equil.) 0.603 0.624 0.630 0.678
Bottom/Right (D1/D2 viol.) 0.197 0.189 0.146 0.132

Game D
Top 0.530 0.508 0.584 0.589
Middle (Equil.) 0.092 0.151 0.103 0.119
Bottom (D2 viol.) 0.378 0.341 0.314 0.292

Left (D1 viol.) 0.076 0.049 0.049 0.049
Middle (Equil.) 0.243 0.308 0.270 0.314
Right 0.681 0.643 0.681 0.638

Equilibrium 0.168 0.230 0.186 0.216

random assignment of participant numbers. At the beginning of a session, subjects received extensive instruction in how to
interpret game matrices with generic payoffs.5

At the beginning of each 20-period block, the computer displayed the game matrix for those periods. The experimenter
read all of the payoffs in the matrix aloud. Subjects then proceeded through each of the 20 periods by clicking on a choice.
After each choice, the computer screen froze, displaying the subject’s choice and the matrix for 20 seconds. Subjects received
no payoff information until the end of the experiment.

Subjects were recruited from an e-mail list of graduate and undergraduate students at the University of Pittsburgh. The
experiment lasted approximately 1.5 hours. Subjects were informed at the beginning of the experiment that their earnings
would be determined exclusively by the points they accumulated during the 80 rounds of play. At the end of the experiment,
subjects were privately paid one at a time.

1.2. Results

We first focus on learning within games, pooling across sessions, to examine whether we also find evidence of the
feedback-free learning observed in Weber (2003). We then turn our attention to whether there is any transfer of learning
across the dominance-solvable games.

1.2.1. Learning within games
The aggregate choice frequencies — by 5-period blocks — are presented in Table 3. Table 4 presents logistic regressions

that systematically examine changes in behavior across periods. The first four regressions explore the extent to which
subjects play Nash equilibrium in the three dominance solvable games and the risk-dominant equilibrium in Game A. The
change in behavior across periods is significant in all four games.

5 Instructions and the complete datasets for all experiments are available from the authors.
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Table 4
Change in behavior across periods within games (Experiment 1).

Logistic regression with clustering of standard errors by subject

Equilibrium D1 violations D2 violations

Game A (B/R) B C D B C D B C D

Period 0.031∗∗∗ 0.015∗∗,a 0.020∗∗,a 0.016∗∗,a −0.032∗∗∗,a −0.035∗∗∗,a −0.044∗,a −0.008 −0.020∗∗,a −0.026∗∗,a

(0.009) (0.009) (0.010) (0.011) (0.013) (0.015) (0.031) (0.016) (0.010) (0.011)

Constant −1.130∗∗∗ 0.146 0.345∗∗ −1.556∗∗∗ −0.974∗∗∗ −1.262∗∗∗ −2.399 0.646∗∗∗ −0.345∗ −0.433∗
(0.226) (0.186) (0.177) (0.199) (0.292) (0.190) (0.352) (0.248) (0.173) (0.262)

Obs. 1480 1480 1480 1480 740 1480 740 740 1480 740

L.L. −912.1 −1007.8 −970.0 −430.7 −381.6 −661.7 −157.2 −484.8 −970.0 −468.0

Note. Standard errors in parentheses. D1 violations: Choices inconsistent with first step of iterated dominance (B in Game B, B/R in Game C, L in Game D).
D2 violations: Choices inconsistent with second step of iterated dominance (L in Game B, B/R or T/L in Game C, B in Game D).

∗ p < 0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01.
a One-tailed.

Table 5
Frequency of violations of iterated dominance by game position (Experiment 1).

Position of game within session

1st game 2nd game 3rd game 4th game

D1 violations 0.205 (37) 0.150 (38) 0.123 (37) 0.122 (36)
D2 violations 0.459 (37) 0.454 (38) 0.441 (37) 0.343 (36)

Note. D1 violations: Choices inconsistent with first step of iterated dominance. D2 violations: Choices inconsistent with second step of iterated dominance.
Number of subjects making relevant decision in parentheses.

Subjects clearly learn in our experiment — their behavior shows systematic change in the direction of the predictions of
rationality. However, it is also important to understand whether what they are learning corresponds to meaningful princi-
ples. The dominance-solvable games allow us to explore this issue.

To explore whether the above learning involves the acquisition of iterated dominance, we consider behavior consistent
with the first two steps of this principle in the three dominance-solvable games. If subjects learn to avoid dominated
strategies (D1) the frequency of Bottom choices in Game B, Bottom/Right choices in Game C, and Left choices in Game D
should decrease. If they learn to avoid strategies that are dominated once one eliminates an opponent’s dominated strategies
(D2), subjects should be less likely to play Left in Game B, Bottom/Right or Top/Left in Game C, and Bottom in Game D.6 The
second and third sets of regressions in Table 4 examine D1 and D2 violations across periods. The frequency of D1 violations
decreases significantly for all three games, while for D2 the decrease is significant in Games C and D.

We find that subjects learn when they play games repeatedly without feedback, and that this learning appears to involve
the acquisition of iterated dominance. But to more definitively determine whether subjects are acquiring a meaningful
understanding of iterated dominance, we next examine whether this acquisition transfers across games.

1.2.2. Transfer across games
Games B, C, and D all have in common the applicability of two steps of iterated dominance. To test whether learning

transfers across games, we compare the frequency with which subjects violate these principles by games’ positions within
sessions. Table 5 presents, by game position, the frequency with which subjects violated the first two steps of iterated
dominance. The table compares behavior in exactly the same three games.7

The frequencies of both kinds of violations decrease with game position. For both D1 and D2, roughly 10% fewer choices
violated the principle in the last game than in the first.8 This can also be seen in Table 6, which presents logistic regressions
of the frequency with which subjects violate each of the two principles by game position within a session (i.e., the “Game
Position” variable takes on values from 1 to 4). The coefficients on Game Position are negative and significant; thus, subjects
are less likely to violate the two principles when playing games later in a session.9

6 In Games B and D, D2 only applies to players in one of the two roles (column in B, row in D), so we can look directly at behavior consistent with D2.
In Game C, which is symmetric, the principle implies that subjects should neither play dominated strategies (Bottom/Right) nor strategies dominated in the
second step (Top/Left). An alternative approach for Game C would be to label a subject as “not violating D2” if she chose either Bottom or Right, but this
would allow a violation of D1 to count as not violating D2.

7 The number of subjects varies across cells because session 4 had a different number of participants.
8 The magnitude of the transfer between the first and last game in a session is roughly 1.5 times greater than the within-game learning we found

between the first and last five blocks in a game.
9 A reviewer correctly noted that the decrease could correspond to subjects simply making fewer errors later in the experiment, after gaining experience.

This interpretation, while plausible here, is inconsistent with the results of Experiments 2 and 3, where we find greater transfer without feedback than
with feedback, and with comparable levels of experience between the two conditions.
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Table 6
Change in behavior across games (Experiment 1).

Logistic regression with clustering of standard errors by subject

D1 violations D2 violations

Game Position −0.220∗,a (0.152) −0.148∗∗,a (0.090)
Constant −1.206∗∗∗ (0.396) 0.064 (0.223)
Obs. 2960 2960
L.L. −1241.9 −2008.5

Note. Standard errors in parentheses. D1: First step of iterated dominance (B in Game B, B/R in Game C, L in
Game D). D2: Second step of iterated dominance (L in Game B, T/L in Game C, B in Game D).

∗ p < 0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01.
a One-tailed.

Another consequence of meaningful learning is that, once a subject learns to identify dominated or iteratively dominated
strategies, (s)he should cease to play such strategies for the remainder of the experiment. Therefore, we also consider the
number of subjects in the first and last games who never violated each of the first two steps of iterated dominance. For
D1, 12 of 37 subjects (who had an opportunity to do so) never played a dominated strategy in their first game, but in the
fourth game this proportion goes up to 21 of 36 (χ2(1) = 4.94, p = 0.03). Similarly, every subject violated D2 at least once
in their first game (0 subjects with no violations). However, in the last game, 9 of 36 subjects never played such strategies
(χ2(1) = 10.55, p = 0.001). It appears that many subjects — at some point in the experiment — learned to apply iterated
dominance, and continued to apply this principle throughout the remainder of the experiment.

We also find evidence of “complementary acquisition” of the two steps of iterated dominance (i.e., subjects need to
acquire D1 before they can acquire D2). We classify subjects according to whether they “never violated,” “stopped violating,”
or “never acquired” a principle throughout the experiment (with the last classification for subjects who violated the principle
in at least one of the last 5 choices in which they could do so). The number of subjects who never violated D1 but violated
D2 at least once (19) is considerably higher than the number who never violated D2 but violated D1 at least once (1).
Similarly, of the 19 subjects who never acquired D1, only 1 never violated or stopped violating D2, but of the 44 subjects
who never acquired D2, 26 never violated or stopped violating D1. Both of these comparisons are consistent with the fact
that acquisition of D2 requires prior understanding of D1.

1.3. Discussion

When playing different games repeatedly without feedback, subjects learn to stop violating the first two steps of iterated
dominance and transfer such learning to later games. This transfer of learning stands in contrast to the limited evidence
of cross-game transfer in previous experiments that provide regular outcome and payoff feedback. The results thus suggest
that withholding feedback might stimulate the kind of meaningful learning that transfers to new games.

However, an obvious limitation is that Experiment 1 did not include a comparison of the kinds of learning that occur with
and without feedback. Such a comparison can determine whether withholding feedback is in fact more likely to stimulate
meaningful learning than providing feedback. In Experiment 2, we perform this comparison.

2. Experiment 2

Experiment 2 examines whether meaningful learning occurs to a greater extent when a first game is played with no
feedback than when it is played with payoff and outcome feedback at the end of every period. We measure meaningful
learning by the extent to which learning transfers to the first period of a new game and by the extent to which it is
consistent with the acquisition of iterated dominance.

The experiment uses a procedure similar to that of Ho et al. (1998). We use two versions of Nagel’s (1995) competitive
guessing (“p-beauty contest”) game. In the game, N players each choose a number in a given range (si ∈ [s, s]). The average
of the N numbers is then multiplied by a constant (p) to obtain a target number. The player whose choice is the smallest
absolute distance from the target number wins a fixed prize.

We use one version of the game with p < 1 (p = 0.7, si ∈ [0,100]) and another with p > 1 (p = 1.3, si ∈ [100,200]),
and follow Ho et al. in referring to the former as the “Infinite Threshold” (IT) game and the latter as the “Finite Threshold”
(FT) game. Iterated deletion of dominated strategies selects unique symmetric equilibria in these two games. In the IT
game, infinite iterations of multiplying 0.7 times the upper bound of 100 yields the Nash equilibrium of s∗

i = 0. In the
FT game, three iterations of multiplying 1.3 times the lower bound of 100 yields the Nash equilibrium of s∗

i = 200. Thus,
both games are solvable by iterated deletion of dominated strategies. In spite of this strategic similarity, however, Ho et al.
found no evidence of transfer in the first period of the second game when the two games were played sequentially with
feedback.

As in Ho et al.’s study, subjects in our experiment played both games, in sequence, for 10 periods. Half of the subjects
received the games in one order (IT → FT) while the other half received the other order (FT → IT) (see Table 7). We varied
the feedback provided between plays of the first game. In the Feedback treatment, subjects received outcome and payoff
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Table 7
Description of treatments and sessions (Experiment 2).

Game order Feedback treatment (first game) Number of sessions Number of subjects

IT → FT Feedback 4 38
No Feedback 4 38

FT → IT Feedback 4 39
No Feedback 4 37

information at the end of each period, as in Ho et al. In the No Feedback treatment, subjects did not receive any feedback
between periods of the first game — they found out first-game outcomes only after completing the second game.

Following 10 periods of the first game, either with or without feedback, subjects played the second game with feedback.
Since iterated dominance applies in both games, we are interested in whether what is learned in the first game produces
immediate transfer to the second game. We predict that initial (Period 11) choices in the second game will deviate less
from Nash equilibrium than the choices of inexperienced subjects (in Period 1), thus exhibiting positive transfer, but only in
the No Feedback treatment.

2.1. Experimental design

Participants were Carnegie Mellon and University of Pittsburgh students. There were 16 sessions. In each session 8 to
10 subjects played two versions of the competitive guessing game — IT and FT — for 10 periods each. The winner in each
period received $3, and in case of a tie this amount was equally divided among the winners. Subjects played one game
first and then received instructions for the other, and the order of games was counterbalanced. Aside from the game order,
sessions also varied by whether the first game was played with or without feedback. Table 7 presents the different kinds of
sessions. The second game was always played with feedback.

At the beginning of the experiment, subjects received instructions describing general procedures and the first version of
the game. After asking any questions, subjects proceeded to the first period. In each period, subjects recorded their choices
on a table at the bottom of their instruction sheet. The experimenter recorded these choices and entered them in a laptop,
which computed the outcome and payoffs for that period.

In the Feedback treatment, subjects received feedback after every period — the average, target number, and participant
number(s) of the winner(s) were written on the board and read aloud, and subjects recorded this information. In the No
Feedback treatment, the experimenter determined the outcome, but this information was not revealed to subjects. Instead,
the experiment proceeded to the next period.

In both the Feedback and No Feedback treatments, subjects played the first game for 10 periods. After the 10th period,
subjects received a new instruction sheet that described the other version of the game. They then played 10 periods of the
second game, with feedback after each period. Following the second game, subjects in the No Feedback treatment received
full outcome information for the first game. Subjects were then paid privately.

2.2. Results

In presenting the results, we first briefly examine whether learning occurred in the first game. We then explore whether
there is transfer of learning to the first period of the second game and whether such learning differs by feedback treatment.

2.2.1. Learning in first competitive guessing game
Figs. 1a and 1b present the mean choices across periods for the two versions of the competitive guessing game, by order

and feedback treatment. The left side of each figure presents the first 10 periods, when the first game was played either
with feedback (F) or without any feedback (NF) between plays of the game. As both figures reveal, there is convergence
towards equilibrium in the first 10 periods, when subjects played the first version of the competitive guessing game, both
with and without feedback.

Table 8 presents average choices, by treatment, in the first and last periods of the first game (1 and 10) and the first
period of the second game (11). In the Feedback treatments (first and third columns of data), the average choices move
significantly in the direction of equilibrium between the first and tenth periods (IT: 34.5, t37 = 6.96, p < 0.001; FT: 36.6,
t38 = 9.29, p < 0.001). Thus, not surprisingly, learning occurs with feedback in the first game played. In the No Feedback
treatment, however, we also observe learning. Average choices move significantly towards equilibrium between the first
and tenth periods (IT: 19.9, t37 = 5.43, p < 0.001; FT: 21.4, t36 = 5.70, p < 0.001). Thus, the results of the first game are
very similar to those of Weber (2003) — subjects learn both with and without feedback, though to a greater extent with
feedback.

Table 9 presents the frequency of violations of the first two steps of iterated dominance at different stages of the
experiment. For each combination of periods, the table presents how many subjects played a strategy that violated the
principle at least once in those periods.



S. Rick, R.A. Weber / Games and Economic Behavior 68 (2010) 716–730 723
(a)

(b)

Fig. 1. (a). Mean choices across rounds (IT–FT), Experiment 2. (b) Mean choices across rounds (FT–IT), Experiment 2.

Table 8
Average choices by treatment and game order (Experiment 2).

Period IT → FT FT → IT

Feedback No Feedback Feedback No Feedback

1 (Game 1) 41.2 (24.8) 45.3 (19.8) 163.4 (24.6) 171.8 (23.2)

10 (Game 1) 6.7 (15.7) 25.4 (17.0) 200.0 (0.2) 193.2 (14.6)

11 (Game 2) 163.5 (27.9) 176.1 (22.2) 43.3 (35.4) 30.9 (25.4)

Note. Standard deviations in parentheses.

In Periods 1–3 of both treatments, roughly 18 percent of subjects play a dominated strategy at least once. In both treat-
ments, however, this percentage decreases to 4 percent by Periods 8–10 (of the first game), and this change is significant
for both treatments (Feedback: χ2(1) = 6.97, p = 0.008; No Feedback: χ2(1) = 8.03, p = 0.005). Similarly, in Periods 1–3
roughly half of subjects violate the second step of iterated dominance at least once, but this proportion decreases sig-
nificantly in both treatments for Periods 8–10 — to 4 percent in the Feedback treatment (χ2(1) = 40.72, p < 0.001) and
19 percent in the No Feedback treatment (χ2(1) = 22.34, p < 0.001). Thus, while we again observe greater learning with
feedback, there is clear evidence that subjects learn even without it.
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Table 9
Number of subjects violating iterated dominance across periods (Experiment 2).

Feedback (n = 77) No Feedback (n = 75)

First step of iterated dominance (IT: xi > 70; FT: xi < 130)
Periods 1–3 (Game 1) 13 (17%) 14 (19%)
Periods 8–10 (Game 1) 3 (4%) 3 (4%)
Periods 11–13 (Game 2) 17 (22%) 9 (12%)

Second step of iterated dominance (IT: xi > 49; FT: xi < 169)
Periods 1–3 (Game 1) 38 (49%) 42 (56%)
Periods 8–10 (Game 1) 3 (4%) 14 (19%)
Periods 11–13 (Game 2) 34 (44%) 23 (31%)

2.2.2. Transfer to second competitive guessing game
To explore transfer across the strategically similar competitive guessing games, we compare the behavior of “inexpe-

rienced” subjects, who have never encountered either game before, to that of “experienced” subjects who have previously
played the other game. To measure the choices of inexperienced subjects, we use choices in the first period (at the beginning
of the experiment) for both games.10

2.2.2.1. Transfer in the Feedback treatment Like Ho et al. (1998), we find no immediate transfer to the second game when the
first game is played with feedback. The average first-period (inexperienced) choices are 43.3 (IT) and 167.4 (FT). As Table 8
reveals, the respective average Period 11 choices in the Feedback treatment (at the beginning of the second game) are 43.3
and 163.5.

Moreover, Table 9 reveals no decrease in the Feedback treatment in violations of either the first or second steps of
iterated dominance across the two games. For the first step, 17 percent of subjects violated the principle in Periods 1–3,
but this percentage increases to 22 percent in the first three periods of the second game (11–13). For the second step,
49 percent of subjects violate the principle in Periods 1–3, and this percentage decreases slightly to 44 percent in Peri-
ods 11–13. In both cases, the changes are statistically insignificant (first step: χ2(1) = 0.66; second step: χ2(1) = 0.24).
Thus, we find no evidence of immediate transfer in the Feedback treatment.11

2.2.2.2. Transfer in the No Feedback treatment In the No Feedback treatment, we find clear evidence of immediate transfer.
Recall that the average first-period (inexperienced) choices in the two versions of the competitive guessing game are 43.3
(IT) and 167.4 (FT). The average choices in the No Feedback treatment at the start of the second game (Period 11) are
30.9 and 176.1 (see Table 8), which are both significantly closer to Nash equilibrium than the corresponding choices of
inexperienced subjects (IT: t111 = 2.63, p = 0.005, one-tailed; FT: t112 = 1.86, p = 0.03, one-tailed).

We also observe evidence of transfer in the No Feedback treatment in Table 9 (right column). In Periods 1–3 of the
first game, 19 percent of subjects violated the first step of iterated dominance at least once and 56 percent did so for the
second step. In Periods 11–13, however, these proportions decrease to 12 percent and 31 percent, respectively. While the
decrease for the first step is not significant (χ2(1) = 1.28), the decrease in violations for the second step is (χ2(1) = 9.80,
p = 0.002).12

Thus, we find immediate transfer to the second game when the first game is played without feedback, even though
we observe no such transfer when the first game is played with feedback. One caveat worth highlighting is that, as Fig. 1
demonstrates, there is evidence of transfer in the Feedback treatment if transfer is defined more broadly as the speed with
which subjects converge towards equilibrium. Mean choices in both treatments converge to equilibrium more quickly in the
second game than in the first game, which was also observed by Ho et al. But a comparison of No Feedback/Feedback means
alone does not shed much light on whether Feedback subjects are just taking longer to transfer a meaningful understanding
of iterated dominance to the second game, or whether they are perhaps simply correcting a misapplied heuristic (initially
believing that choices will converge to the same boundary as in Part 1, but then realizing that choices will converge to
the opposite boundary and adjusting quickly in that direction, without really understanding why). To shed light on this
question, we can examine whether learning in the first game is more strongly related to evidence of learning in the second
game in the No Feedback treatment than in the Feedback treatment. That is, to what extent is learning at the beginning of

10 Thus, we compare first-period choices in the second game from one sequence (when subjects have experience with the other game), to first-period
choices in the first game from the other sequence (in which subjects play the same game, but without any prior experience). We also pool first-game
choices from the two feedback treatments (i.e., pooling the first row of Table 8 by game), which proceeded identically up to the end of the first period
(when one treatment received feedback and the other did not). If we compare first-period choices by feedback treatment, we find no significant differences
between the Feedback and No Feedback treatments (IT: t74 = 0.79; FT: t74 = 1.53).
11 In later periods of the FT → IT treatment, choices move away from Nash equilibrium. In a few sessions, subjects began experimenting with choices of

100 (perhaps out of boredom or to try to gain a strategic advantage — cf. Weber, 2003). In some cases this occurred in consecutive periods, raising the
average substantially and persisting into subsequent periods. In the No Feedback treatment, these choices of 100 started to occur somewhat earlier in two
sessions (contributing to the slower convergence towards zero).
12 We also observe greater equilibrium play in Period 11 of the No Feedback treatment (IT: 2/37; FT: 10/38) than in the Feedback treatment (IT: 1/39;

FT: 4/38). Combining the two game order treatments, this difference is marginally significant (χ2(1) = 3.46, p < 0.07).
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Table 10
Factors influencing distance from equilibrium of Period 11 choice (OLS) (Experiment 2).

Both treatments Feedback treatment No Feedback treatment

No Feedback −12.59∗∗∗,a (4.58)

Distance from Equil. in Period 10 0.19 (0.32) 0.19 (0.32) 0.43∗∗∗,a (0.14) 0.41∗∗∗,a (0.16)

Distance from Equil. in Period 1 0.05 (0.15) 0.04 (0.13)

Constant 39.92∗∗∗ (3.22) 39.29∗∗∗ (3.80) 37.35∗∗∗ (7.01) 20.41∗∗∗ (3.53) 19.31∗∗∗ (5.06)

R2 0.05 0.01 0.01 0.09 0.11

Obs. 152 77 77 75 75

Note. Standard errors in parentheses.
∗ p < 0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01.
a One-tailed.

the second game correlated with learning at the end of the first game? A positive relationship would suggest that subjects
are indeed transferring something meaningful from the first to the second game, while the absence of a relationship would
indicate that subjects are not really transferring any knowledge from the first game to the second, and that anything that
looks like transfer of learning in early periods of the second game must be something else.

Table 10 presents OLS regressions exploring the determinants of Period 11 choices (the first period in the second game).
The dependent variable is the distance of a subject’s Period 11 choice from the Nash equilibrium in the corresponding
game (i.e., xi in IT and 200-xi in FT). The first regression confirms the above effects of withholding feedback on immediate
transfer: Period 11 choices are significantly closer to equilibrium, on average, in the No Feedback treatment.

The remaining regressions explore the relationship between Period 11 choices (second game) and behavior in the first
game, separately for each treatment. There is no significant relationship between Period 10 and Period 11 choices in the
Feedback treatment, but there is a strong and statistically significant relationship in the No Feedback treatment.13 That is,
only in the No Feedback treatment do subjects who played strategies close to equilibrium at the end of the first game
also do so at the beginning of the second game. This is robust to controlling for subjects’ Period 1 choices (how much
knowledge they had at the beginning of the experiment). Thus, subjects who appear to “learn” a principle by the end of the
first game are more likely to behave consistently with that principle in the second game in the No Feedback treatment, than
in the Feedback treatment.14 Thus, when we move beyond a simple comparison of means in the second game, we find little
evidence that subjects in the Feedback treatment are applying something they learned in the first game to the beginning of
the second game, while for No Feedback subjects we do find such a relationship.

2.3. Discussion

Consistent with much previous research on strategy learning, the kind of learning obtained with feedback does not
immediately transfer across strategically similar games. But the kind of learning produced by repeated play without any
feedback transfers to the first period of the second game. Thus, we find that meaningful learning is more likely to occur
when feedback is withheld than when feedback is given.

3. Experiment 3

The results obtained thus far suggest that feedback-free repetition results in meaningful learning that transfers across
games (Experiments 1 and 2), even when feedback-based learning does not (Experiment 2). Experiment 3 examines why
meaningful learning is more likely to occur when feedback is withheld than when feedback is given.

Prior psychological research has proposed that feedback can reduce people’s ability and motivation to think carefully
about a task (Einhorn, 1980; Goodman, 1998). If so, then interventions that force people to think carefully about the task
at hand should moderate the influence of feedback on meaningful learning. “Self-explanation” is one such intervention:
people who explain to themselves why they are doing what they are doing tend to think more deeply about the task at
hand than people who do not generate such explanations (e.g., Chi et al., 1994). Such explanations also tend to facilitate the
development of knowledge that transfers across related tasks (Gagne and Smith, 1962).

13 An anonymous reviewer suggested an alternative interpretation of our main results in Experiment 2, which Table 10 helps rule out. This interpretation,
based on “anchoring and adjustment” (Tversky and Kahneman, 1974), posits that subjects simply anchor on, and adjust from, their Period 10 choice
when making their Period 11 choice; the adjustments are approximately equal across treatments, and No Feedback subjects are closer to equilibrium in
Period 11 simply because they were farther from equilibrium in Period 10. Note that this account would predict a negative correlation between distance
from equilibrium in Period 10 and Period 11 for both treatments. But as Table 10 reveals, the relationship is positive for both treatments, and significantly
so for the No Feedback treatments.
14 We observe a similar pattern if we examine the relationship between violations of iterated dominance in the last three periods of the first game and

the first three periods of the second game. In the Feedback treatment, 74 subjects never violated dominance in the final three periods of the first game
(see Table 9). Of these, 17 (23%) violated this principle at least once in the first three periods of the second game. However, in the No Feedback treatment
this proportion is lower (9 of 72, or 13%; χ2(1) = 2.73, p = 0.10). For the second step of iterated dominance, the proportion of Periods 8–10 non-violators
who violated this principle in Periods 11–13 is also higher in the Feedback treatment (32 of 74; 58%) than in the No Feedback treatment (14 of 61; 23%;
χ2(1) = 6.13, p = 0.01).
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Experiment 3 examines whether self-explanation (in the form of written explanations for one’s own decisions and the
decisions of others) moderates the influence of feedback on meaningful learning. If self-explanation has a greater effect on
meaningful learning when feedback is provided than when feedback is withheld, then we would have evidence indicating
that withholding feedback stimulates meaningful learning by encouraging players to spontaneously engage in a process
similar to self-explanation. Put differently, if withholding feedback primes deeper thinking in the same way self-explanation
does, then their effects should be similar and substitutable.

In the experiment, subjects initially played 10 periods of the Finite Threshold (FT) competitive guessing game from Ex-
periment 2. We varied whether or not subjects received feedback at the conclusion of each round, as well as whether or not
subjects were asked to explain their decisions and the (revealed or predicted) decisions of others during each period. At the
conclusion of these 10 periods, subjects played a single period of the Infinite Threshold (IT) game. As in Experiment 2, we
measure meaningful learning by the extent to which choices in the second game deviate from Nash equilibrium. If feedback-
free repetition stimulates people’s ability and motivation to think carefully about a game, then its effects should be similar
to those produced through self-explanation. Therefore, we predict that the presence of either feedback-free repetition or
self-explanation should facilitate meaningful learning, but that their combination should produce no additional benefits.

3.1. Experimental design

Participants were University of Pennsylvania students. In each session 7 to 10 subjects played 10 periods of the FT com-
petitive guessing game, followed by one period of the IT competitive guessing game. The winner in each period received $2,
and in case of a tie this amount was equally divided among the winners.

At the beginning of the experiment, subjects received instructions describing general procedures and the FT game. After
asking any questions about the game, subjects proceeded to the first period. The experiment was computerized, using the
z-Tree software (Fischbacher, 2007), and in each period subjects typed their choices and recorded them on a table at the
bottom of their instruction sheet.

In the first game, we varied whether or not subjects received feedback, as well as whether or not subjects were asked
to explain their own decisions and the (revealed or predicted) decisions of others. In the Feedback (F) treatments, the
computer revealed the average, target number, and the amount of money earned at the end of each round. Subjects recorded
this information on a record sheet before proceeding to the next round. In the No Feedback (NF) treatments, the computer
asked subjects what they thought the average choice was at the end of each round. Subjects typed this number and recorded
it on a record sheet before proceeding to the next round.15

In the Explanation (E) treatments, subjects were asked to enter a choice and then, on the same screen, to “type a
sentence or two indicating why you made the particular choice you made. You can write what led you to think of this
choice or why you think this choice may be a good one that is likely to win the prize.” After either receiving feedback or
guessing the average choice in the round, subjects were asked to “type a sentence or two indicating why you believe this
[was/is likely to be] the average in this round. You can write what [made this number likely to be the average/led you to
think of this as your guess of the average] or why you think others may have chosen numbers that [made this/make this
likely to be] the average.” In the No Explanation (NE) treatments, subjects made their decisions and either received feedback
or guessed the average, but were not prompted to explain their own decisions or the decisions of others.

Following the 10th period, subjects received new instructions that described the IT game. After asking any questions,
subjects played one period of the game. Subjects did not explain their decisions or the decisions of others, and all subjects
received feedback at the end of the period.

After the second game, we administered the short form of the Need for Cognition scale (Cacioppo et al., 1984), which
measures individual differences in the tendency to engage in and enjoy thinking.16 Next, No Feedback subjects received all
of the outcome information for the FT game. Subjects were then paid privately.

3.2. Results

Table 11 presents the number of sessions and subjects per treatment.17 We first briefly examine whether learning oc-
curred in the first game. We then explore whether there is transfer of learning to the second game and, more importantly,
whether self-explanation moderates the influence of feedback on transfer.

15 We asked No Feedback subjects to guess the average because, as we explain below, we asked subjects in the Explanation treatments to explain why
they thought other subjects chose what they chose. Weber (2003), in a similar competitive guessing game, varied whether or not No Feedback subjects
guessed the average choice in each round and found that making these guesses did not influence learning.
16 Since individuals high in Need for Cognition may be more likely to spontaneously engage in self-explanation, we included the scale to control for this

potentially important individual difference.
17 We excluded one session (N = 10) from the analysis. Partway through this session, the experimenter had to leave abruptly, and the remainder of the

session was administered by a lab assistant. One subject in this session, either due to boredom, misunderstanding, maliciousness, or some combination of
these factors, consistently chose numbers whose individual digits summed to or included seven (e.g., Round 6: 131.11, reason given: “seven. I was trying
to reach seven”; Round 8: 124, “1 + 2 = 3 3 + 4 = 7”; Round 11: 77.77). Because this was a Feedback session, this subject’s erratic behavior coupled with
the experimenter leaving raised suspicion among other subjects about whether the game was real (e.g., subject 5 in Round 9: “Perhaps there is a computer
player choosing random numbers”; subject 1 in Round 10: “This is real, right?”). An analysis of data from this session clearly reveals it to be an outlier
relative to other sessions.
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Table 11
Description of treatments and sessions (Experiment 3).

Self-explanation treatment Feedback treatment Number of sessions Number of subjects

Explanation (E) Feedback (F) 4 36
No Feedback (NF) 5 42

No Explanation (NE) Feedback (F) 6 57
No Feedback (NF) 5 50

Fig. 2. Mean choices across Rounds 1–10 (FT), Experiment 3.

3.2.1. Learning in the first competitive guessing game
Fig. 2 presents the mean choices across periods, by treatment. As the figure reveals, there is convergence towards equi-

librium in all treatments. Average choices move significantly in the direction of equilibrium between the first and tenth
periods in all treatments (NF + NE: 11.0, t49 = 2.17, p < 0.04; F + NE: 33.9, t56 = 9.60, p < 0.0001; NF + E: 16.1, t41 = 4.31,
p = 0.0001; F + E: 33.1, t35 = 6.23, p < 0.0001). Consistent with Experiment 2, we observe greater learning in the Feedback
treatment when we pool across self-explanation treatments (mean difference between Period 1 and Period 10 choices in
NF treatments: 13.3, mean difference in F treatments: 33.6; t183 = 4.61, p < 0.0001). Also, Explanation generally had little
effect on choices in the Feedback treatment (no F + NE/F + E difference reaches p < 0.10) or the No Feedback treatment
(only the period 5, 6, and 9 NF + NE/NF + E differences reach p < 0.10).

3.2.2. Transfer to second competitive guessing game
Fig. 3 presents the mean choices in Round 11, by treatment. Lower choices are closer to equilibrium. Consistent with

Experiment 2, mean choices under No Explanation are closer to equilibrium under No Feedback than under Feedback (31.9
vs. 41.9, t105 = 1.63, p = 0.05, one-tailed).

Our hypothesis for Experiment 3 was that Explanation and No Feedback would have substitutable effects on transfer.
That is, we expected that the presence of either treatment would enhance meaningful learning, measured by transfer in
Period 11, but that the presence of both treatments would produce no additional benefit. The pattern in Fig. 3 is consistent
with this hypothesis. Average Period 11 choices are very similar when either No Feedback (NF) or Self-Explanation (E) is
present, ranging from 27.2 to 31.9, and are statistically indistinguishable. However, the average choices in all three of these
conditions are well below the average choice in F + NE (41.9) and these differences are at least marginally statistically
significant (vs. NF + NE: t105 = 1.63, p = 0.05; vs. NF + E: t97 = 1.53, p = 0.06; vs. F + E: t91 = 2.16, p = 0.02, all one-
tailed).18

Table 12 presents OLS regressions that systematically explore these differences. No Feedback yields lower Period 11
choices, as does Explanation. However, the interaction of No Feedback and Explanation produces a net effect that is similar

18 Similar results are obtained when examining violations of iterated dominance. For example, the proportion of F + NE subjects violating the second
step of iterated dominance in Period 11 is only insignificantly smaller than the proportion violating the second step of dominance at least once in Periods
1–3 (42% vs. 51%; χ2(1) = 0.88, p = 0.35). However, this difference is significant in NF + NE (20% vs. 54%; χ2(1) = 12.40, p < 0.001), NF + E (21% vs. 52%;
χ2(1) = 8.64, p = 0.003), and F + E (19% vs. 61%; χ2(1) = 12.99, p < 0.001).
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Fig. 3. Mean Round 11 choice (IT), Experiment 3.

Table 12
Factors influencing distance from equilibrium of Period 11 choice (OLS with clustering of standard errors by session) (Experi-
ment 3).

Model 1 Model 2

No Feedback −9.98∗∗ (5.64) −11.06∗∗ (5.17)

Explanation −14.68∗∗∗ (4.49) −14.88∗∗∗ (4.04)

No Feedback × Explanation 14.22∗∗ (7.62) 14.41∗∗ (7.26)

Need for Cognition −0.34∗∗ (0.18)

Constant 41.91∗∗∗ (4.09) 68.60∗∗∗ (14.66)

R2 0.04 0.06
Obs. 185 185

Note. Standard errors in parentheses. All one-tailed.
∗ p < 0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01.

to the effect of No Feedback alone. That is, as we hypothesized and as can also be seen in Fig. 3, adding Explanation
to Feedback moves choices significantly closer to the equilibrium, but adding Explanation to No Feedback has no effect.
Model 2 reveals that the results are unchanged when controlling for individual differences in Need for Cognition. Need for
Cognition has a negative influence on Period 11 choices (p < 0.04, one-tailed), suggesting that the more people are naturally
inclined to engage in deep thinking, the closer their Period 11 choices are to the Nash equilibrium.

3.3. Discussion

Experiment 3 sheds light on the process by which withholding feedback stimulates meaningful learning. Self-explanation
significantly enhances meaningful learning and transfer, but only in the Feedback treatment. Under No Feedback, self-
explanation has no effect. Given that self-explanation has previously been demonstrated to deepen thinking, this interaction
suggests that the enhancement of meaningful learning produced in the No Feedback treatments was the result of a process
similar to that which was produced by self-explanation. Put differently, our No Feedback treatments appear to facilitate the
same kind of deeper thinking that is produced through self-explanation.

4. Conclusions

Game theorists are beginning to devote significant attention to the process by which players acquire generalizable knowl-
edge that transfers to strategically similar settings (e.g., Stahl, 2000a, 2000b; Rankin et al., 2000; Cooper and Kagel, 2003,
2005, 2008). We contribute to this literature by demonstrating that withholding feedback in repeated play stimulates mean-
ingful learning and cross-game learning transfer in dominance-solvable games, including normal-form games (Experiment 1)
and competitive guessing games (Experiment 2). We also demonstrate that withholding feedback is more likely to stimulate
meaningful learning than providing regular outcome feedback (Experiment 2), and that the effects of withholding feedback
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are very similar to those produced by self-explanation, another intervention known to facilitate deeper thinking (Experi-
ment 3).19

Our work demonstrates that withholding feedback, a manipulation previously employed in game theory experiments
to eliminate learning (e.g., Costa-Gomes and Crawford, 2006), can have counterintuitive effects, namely the facilitation of
meaningful learning. While games played only once or twice each (as in Costa-Gomes and Crawford) might not yield mean-
ingful learning when played without feedback, we demonstrate that such learning can occur with 10 or 20 repetitions of a
game.20

Since our work is based on a large body of research in psychology, we present an opportunity for game theory to further
integrate knowledge from other disciplines. For instance, one goal of subsequent research should be to further develop
theoretical models that account for the two kinds of learning. Turning to the existing theoretical literature in psychology
may be helpful in this regard. Psychological models that allow for two kinds of learning (e.g., ACT-R; Anderson and Lebiere,
1998) present a potential starting point.

It is also worth highlighting that our work does more than just replicate what psychologists already know about learning.
To the best of our knowledge, none of the related prior psychological work paid subjects based on their performance,
which is an important factor for facilitating learning, presumably by increasing effortful thinking (cf. Camerer and Hogarth,
1999), and which could have therefore mitigated the feedback-based effects on learning typically observed in psychology
experiments. We find that the benefits of withholding feedback for developing meaningful transfer exist even when subjects
are motivated by monetary incentives. Additionally, none of this prior research explored learning in strategic contexts, such
as games. Finally, our third experiment sheds new light on why withholding feedback stimulates meaningful learning,
a contribution to both economics and psychology.

Of course, the procedure we use — feedback-free repetition — is only one way to develop meaningful learning, and there
may be other, potentially better, methods. For example, would providing time for introspection function as well as feedback-
free repetition? Some models in economics propose that players can develop improved reasoning ability by introspecting
prior to playing a game (Goeree and Holt, 2004; MacLeod, 2002; Capra, 2003). However, it is also possible that time alone
might not produce meaningful learning. For example, empirical research in psychology suggests that people tend to postpone
thinking concretely about specific aspects of a situation until it is imminent (Trope and Liberman, 2003). This work suggests
that, no matter how long people have to think about a game they are about to play, they may not think about it carefully
until they actually begin to play.

Moreover, there may be conditions under which meaningful learning develops even when feedback is provided. Exper-
iment 3 demonstrated one such condition (self-explanation), but there may be others. In Experiments 2 and 3, subjects
played one game and were then “surprised” by a second, strategically similar game (cf. Merlo and Schotter, 1999). It would
be interesting to examine whether warning subjects in advance that they will play a different but related game in the future
allows meaningful learning even with feedback. Moreover, previous research in psychology demonstrates that delayed feed-
back is useful for producing the kind of learning that transfers, and a considerable literature explores the optimal timing
of feedback (e.g., Schmidt et al., 1989; Erev et al., 2006). Therefore, subjects in our experiments might demonstrate even
greater meaningful learning if presented with feedback after some such “optimal” delay.21

Future work should also examine the extent to which the benefits of feedback-free repetition generalize across contexts.
Games like the competitive guessing game are contexts in which players do not need meaningful learning to perform
well when feedback is provided. These are precisely the kinds of contexts in which providing feedback should inhibit
transfer, and therefore our feedback-free environments are useful for facilitating meaningful learning. By contrast, we should
observe less of an advantage for feedback-free learning in games and environments where meaningful learning is required to
perform well even when feedback is provided. Future work should also examine whether feedback-free repetition facilitates
meaningful insight into game-theoretic principles other than dominance (e.g., backward-induction).

Our experiments provide a useful starting point — along with other recent work — for further exploring distinctions
among different kinds of learning in games, and the source and consequences of such a distinction. But much remains to
be done before this distinction can be fully incorporated into economics and game theory.
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